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SUMMARY

The study of a thin, incompressible Newtonian fluid layer trapped between two

almost parallel,sliding surfaces has been actively pursued in the last decades. This

subject includes lubrication applications such as sliderbearings or the sealing of non-

pressurized fluids with rubber rbtary shaft seals. In the present work we analyze

numerically the flow of lubricant fluidthrough a micro-gap of sealing devices. The first

stage of this study is carried out assuming that a 'small-gap' parameter 6 attains an

extreme value in the Navier-Stokes equations. The precise meaning of small-gap is

achieved by the particular limit 6--0 which, within the bounds of the hypotheses,

predicts transport of lubricant through the sealed area by centrifugal instabilities.

Numerical results obtained with the penalty function approximation in the finite
element method are presented. In particular, the influence of inflow and outflow

boundary conditions,and theirimpact in the simulated flow axe discussed.

INTRODUCTION

Most seals are relativelysimple elements widely employed in diverse types of

rotary machines. This sealing component isoften used to seal rotating shafts at low oil

pressures,avoiding the transport of contaminant to,or lubricant from, the equipment it
protects. The seal, bonded to the oil reservoir,is stationary and presents a narrow

section that slides over the moving surface of the rotary shaft. Fig.l shows a cross

sectionof the geometry under consideration.

The device isdesigned to have an interferencewith the shaft.Therefore, once the

piece is mounted, the compliance of the elasticbody ensures a perfect fitbetween the

seal and the cylindricalsurface of the shaft.Under these conditions, some of the initial

asperitiesof the seal wear out after a brief period of time, leaving an extremely thin

layer of lubricant fluid that separates the surfaces in contact. This was firstnoticed by

Jagger (ref.1)and, ever since, numerous explanations attempted to account for two

consequences of this experimental fact:the hydrodynamic force able to sustain a gap

between the two bodies and the mechanisms that prevent the fluid from leaking

through. Jagger proposed that the surface tension of the sealed fluid controls leakage

thanks to a meniscus formed on the airside.Kawahara and Hirabayashi (ref.2)observed
that a properly installedand functionalseal leaked when the installationisreversed.

With the assumption of relative parallel sliding between two rough surfaces,

lubrication theory has been t_e chosen tool by many researchers to answer these

fundamental problems (see e.g."ref'3).The load-carrying capacity of parallelslidingof

rough surfaces was firststudied by Davies (ref.4).Later on, Jagger and Walker (ref.5)

assumed that the asperitiesact as micro-bearings pads in the contact area. However,

Lebeck (refs.6and 7) concluded that none of the existing models can fullyexplain the

sliding motion as commonly observed in experiments. GabeRi and Poll (ref.8)studied

the dominant action of the surface microgeometry in the formation of the lubricant
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film. They found that the contribution of mechanical pressure to the load-carrying
capacity due to body contact is very small and indeed negligible. Salant (ref.9) claimed
that micro-undulations in the lip surface restrict leakage by virtue of a 'reverse-

pumping' process in which fluid is driven from the low to the high pressure side.
However, no one has really observed such micro-undulations, either in static or dynamic

conditions (ref.10).
Combinations of angular velocity and system eccentricity beyond the ability of

the sealing device to maintain contact with the shaft would cause the seal to leak

profusely, it has been suggested that an inherent pumping mechanism (ref. 11), sufficient
to counterbalance those influences promoting leakage, would be given by a relative
motion between the sealing surfaces. Besides all these explanations, at present there is a
wide gap between theory and practice, and a feasible explanation of the mechanism
involved in the sealing action is still pending, even though elastomeric seals have been
used extensively since the 1940's ................. : :_ ..........

In the next Section, we establish the small-gap equations using a rather simple

order-of-magnitude analysis. This is followed by numerical examples showing the
validity of the proposed model and the influence of the boundary conditions in the
numerical predictions.

Shaft

)

fig. 1 - Cross section of a typical sealing device

ANALYTICAL MODEL

We assume an oil-film already formed ignoring any mechanical contact between
the sealing device and the shaft, as well as any distortion of the upper elastic seal. We
consider a thin viscous liquid layer bounded above by a smooth surface and below by a
perfectly rounded shaft, without including edge effects such as the meniscus
experimentally observed on the air-side (ref.1). Despite the fact that the film within the

gap is very thin, we assume it to be thick enough to conform to the continuum
hypothesis. There is no local rupture of the film such as cavitation or dry spots in the
contact area, and the layer consists of an incompressible Newtonian fluid with constant
properties under isothermal conditions.

We begin with the Navier-Stokes equations written in cylindrical coordinates
(ref.12), setting the direction of the line r = 0 coincident with the shaft axis

10(ru,) 1 Ouo _gu,
_"-_'-_--+ _,-3"_-+ -3-_--= 0 (I)

__ Op (Aur- 20uo ur (2)
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-j-ff + ff.grad(uo) + .--y- - -_ _-_ + v 20uo uo (3)

where

+ if.grad(u=) = -1 + v Au= (4)

In absence of a free surface the gravitational body force is expressed as the
gradient of a scalar quantity and, therefore, it has been included in the pressure

gradient term.
The analysis of the lubricant flow in the mlcro-gap involves, roughly spealdng,

three disparate length scales, namely, the radius R of the shaft (,,-0.04m), the much
smaller thickness ho of the fluid ( ,-_ 10/_m) and an intermediate length b characterizing

the axial extent of the contact region (,,_-200#m) (see fig. 1). Next, the Navier-Stokes
equations, once recasted with the aforementioned scales, are simplified by letting the

ratio between the gap height and the radius of the shaft formally approach zero.

Inner region: lubrication regime

Given the tiny thickness of the lubricant film, radial oscillations proportional to

the gap height will alter considerably the flow inside the micro-gap. To analyze this
effect, consider a shaft rotating at angular velocity f_ and separated an average distance
h o from the stationary seal (fig.l). Introducing now

r-R , r -. fit (5)

(u,v,w) .-. ( u, u, uo (p- p,,), :m (6)
h

into the
equations of motion (1)-(4), and letting /_ = _ formally approach zero

while

holding everything else fixed, we get

v.a = o (7)

u ( 0,. + a.V) a - R, w_ _ = -Vp" + Vh7 (s)

( 0. + c.v) = (9)

where

and

f_Rho
R, = -"v-- : Reynolds number (10)

nh_
u = ---g- : squeezing Reynolds number (11)

Several other scaling are possible (ref.13), but this particular choice seems to be
consistent with Gabelli and Poll observations (ref.8). They stated that the average
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pressure gradient in the circumferential direction is indeed negligible when compared

with the pressure gradient across the sealing contact. The squeezing Reynolds number _r
is commonly so small that inertia terms can be neglected and the classical lubrication
theory can be applied. Moreover, for small R., as it turns out to be in most
applications, the flow is stable to small pertur_ation_ (ref.14). In the absence of
mechanical vibrations, no secondary flow is possible at this level, the circumferential

flow being stable and mostly of Couette type.

Outer region: centrifugal effects

The loss of contact between seal and shaft, combined with changes in the
eometrv, will introduce different features in the flow behavior as we go farther away
om the gap. For a slowly-varying channel of height d(z) on the outside (fig.i), we

rescale the flow field by writing

u0

, r -, _ (12)

, p" ..* (P- P")d2 (13)
pv 2

where d is some mean value of d(z). It can be shown that the equations of motion, in
the limit 6 = d/R -.* O, become

where

V.a=0

(0_+_.V)_- Tow 2_= -Vp'+V2z7

(a.+a.V) w= V2w

(14)

(15)

(16)

To _2Rd3- 7 : Taylor number (17)

Note that the above system of equations are the so-called _small-gap' equations, widely

used in the context of the stability of axisymmetric Taylor-Couette flows (ref.15).
Again, while the curvature effects are almost completely neglected, they are retained
through the centrifugal term by imposing the Taylor number be held fixed as 6 -. 0. It

follows that a rigid seal separated from a rotary shaft by a thin lubricating film is
subject to centrifugal instabilities in a neighborhood of the contact area, driving
eventually a secondary flow across the gap. Had we used these scales in the inner region

= -- -_ v2 = "--V-- =R, 6_O as6-_O (18)

outer region l inner region

and the Taylor number indicates where curvature effects must be retained, regardless of
the scales chosen.

In principle, the flow of lubricant fluid is governed by a set of equations similar
to those of a stratified flow, where the centripetal acceleration plays the role of the
buoyancy force, although for rotating flows whose inner surface moves the basic state
could be unstable to small disturbances.

The domain under consideration is typically unbounded, and clearly some
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difficulties arise with the introduction of artificial boundaries. It is known that

isothermal flows with open boundaries can be successfully modeled employing the so-
called natural boundary conditions, but other techniques are needed to solve the more
complicated problem of buoyancy-driven flows, where the use of the natural boundary
conditions is precluded by the additional pressure gradient generated by the buoyancy

term (refs. 16 to 18).
In the next section we address the appropriate use of the penalty formulation in

the finite element method for unbounded flows in presence of variable body forces.
Finally, we will see how different open boundary conditions can lead to contradictory
predictions in the flow behavior.

PENALTY FUNCTION FORMULATION FOR THE N-S EQUATIONS

In what follows, we denote the coordinate directions as (x,y) or (xl,;r2) , the
transverse velocity components as (u,v) or (ul, u2) , the azimuthal component of the

velocity as w, and the pressure as p; 6ij is the Kronecker delta. For convenience in the
treatment of the boundary conditions, we rewrite the equations of motion as

=0 (19)

_u i _u i

+ = T. w2 6i2 +

0w 0w-_- + uj _ =

C_ij

(20)

(21)

The Taylor number T° is defined in equation (17), and the stress in the fluid is given
now by

aiJ = -- p61j "4"( Ou i OUj+ (22)
A weak form is obtained by taking the _mer product of the transverse

momentum equations (20) with a weighting function _ = (w1, w2) , and multiplying the
azimuthal momentum equation (21) by a scalar function W. The penalty method is
implemented by introducing the pseudo-constitutive relation (ref.19)

Oul

p= (23)
where p, is the hydrostatic pressure for a fluid at rest and A is the penalty parameter.
Upon application of Green's theorem and substituting p by the above expression, we get

cgul f Oui (gWi cgui Oui OWi

. on _nj ds (25)

where the surface forces S! and the volume forces V! are defined by

Oui Oui

S,= I[-p W,,,, + Wi(N+ _)n_ ]ds (26)
8f_
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V! = f T_ w 2 _i2 W_ dfl (27)
fl

and 6 = (nl, n2) is the unit vector normal to the boundary Of_ and pointing outwards.

On a vertical boundary With normal N = (1, 0), the integrand of $1 reduces to

"* Ou
W=(W1,0): -p+2_-_

for normal traction, and

"* Ou Ov
w = +

for shear traction, in a weak rather than a pointwise sense.

= - : 2z 7 : 7_

(28)

(29)

Boundary conditions

The boundary conditions are the usual no-slip and no mass penetration at solid
walls on the physical boundaries. This is, u = v = 0 and w = 1 at the lower boundary
y = 0, which represents the outer surface of the rotating shaft, and u = v = w = 0 at the
upper boundary, which is stationary.

At the open boundaries, on both sides of the contact region, the following two
open boundary conditions (OBC) are employed for the flow field.

(i) Stress-free or natural boundary condition (NBC). We set the normal and shear
stresses in equation (26) equal to zero.

(ii) Free-boundaz 3" condition (FBC). We evaluate the line integrals (26) of the weak
form of the momentum equations using values computed on the outflow elements.

Then, we force the line integra_ into the right-hand-side of the discretized equations
until convergence is achieved (refs. 17 and 18).
The natural boundaz3r condition Ow/On-O is used in the weak form of the transport
equation (25) instead.

FINITE ELEMENT METHOD

We discretize the domain into M elements ancl N nodes, and we expand the

velocity components using bilinear quadrilateral elements and piecewise constant
elements for pressure. All terms of the weak form of the governing equations are
evaluated With full Gaussian quadrature, except the penalty term, where selective
reduced integration is used (ref.20). The weighting functions are set equal to the basis
functions, except in the convective terms, where perturbed Petrov-Galerkin functions

With balancing tensor diffusivity are employed (refs.21 and 22). The time integration is
based on the theta method with lumped mass matrices in the time derivatives. The

numerical evaluation of the weighted residuals of the momentum equations leads to a
nonlinear system of equations that is solved by Newton iteration using a direct solver
based on Gauss elimination for unsymmetric l_anded matrices (ref.23). A convergence
tolerance less than 1% of the relative change IIAu" ]1/11u"i[ in the velocity field is imposed

to terminate each full u-th Newton iteration. The pressure p, over each element fl_ is
calculated using the weak form of the relation (23)

p, "- -_ df_ (30)
fie
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where the cross bar denotes selective reduced integration.
To march in time we use the velocity field u n and pressure p, at time t n to

evaluate the terms of S! and V/of the buoyancy force vector bn. Having determined bn,
we compute the velocity field using the Newton linearization algorithm. Once u" + 1 is
known, we update the pressure by means of the equation (30) and solve the transport
equation for to "+1. The scheme is repeated until steady state is achieved. Time

integration is terminated when the relative change between time steps is

where

Uu' 1- nllII°'+I-°°IIu" +1 < eI and w" +l < e2 (31)

2N

,,u,,= lull
2"1

for some prescribed error tolerances e1 and e2. All the following results are obtained with

the fully implicit algorithm starting from zero initial conditions.

NUMERICAL EXAMPLES

Preliminary computations showed the necessity of using mesh grading as the
contact region is approached from both sides. Transition elements are also employed to
avoid extremely small elements in the contact area.

The geometry and the finite element mesh employed for the present calculations
axe shown in fig. 2. Details of the discretization can be appreciated in fig.3. The mesh

contains 2035 nodes and 1864 elements, and the penalty parameter A is equal to l0 s in
all cases. The relevant lengths are b = 200/_m, which is used as reference length,
ho = 10/_m, and R = 0.035m.

The pressure is adjusted at every time step in such a way that is always zero at

the first element (located at z = -11, y = 0); and the line integrals (26) are evaluated,
if the OBC requires so, with values computed on the outflow elements.

Results of the transverse velocity field, the azimuthal component of the velocity,
and the pressure obtained with the FBC at the open boundaries are all shown in fig.4,
and continues up to fig.7. The simulation corresponds to a Taylor number T_ = 15. The
steep pressure gradient developed across the gap is shown in fig.5, and the resultant flux
of lubricant flowing from the air-side to the oil-side is observed in fig.6. Streamline
contours are plotted in fig.7. Similar results obtained with the NBC at the outlets can
be seen from fig.8 to fig.ll. The striking differences in the numerical predictions of both
OBC are better illustrated in fig.7 and fig.ll. The former clearly shows that an
improper treatment of the open boundary conditions causes backflow into the
computational domain. The intensity of the returning flow due to the NBC at the air-
side outflow boundary induces a cell structure in an otherwise almost plane Couette
flow (see w in fig.4).

CONCLUSIONS

The geometry and, in particular, the tiny size of the gap imposes a severe
constraint in the numerical simulation. Furthermore, we have seen that an improper
specification of the outflow bounda.,T condition can cause artificial returning flow which,
for the present problem, spoils the solution in the whole computational domain. Both
boundary conditions show that centrifugal instabilities play an important role in the
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sealingmechanismsof the type of deviceshere studied, even when their predictions are
contradictory. While the NBC suggestsleakage, the FBC indicates that sealing is
achievedby pumping oil from the air-side,where the azimuthal fl0w is stable, to the oil-
side,where centrifugal instabilities set in.

It is known that the useof the NBC in presenceof variable body forces leads to
erroneous results (refs.16 and 18). On the contrary, the application of the FBC is
equivalent to a radiating boundary able to filter unwelcome reflections towards the
interior of the computational domain (ref.24).

Besides its simplicity, the capability of the small-gap limit in incorporating the
physics of the flow of lubricant fluid through the micro-gap of sealing devices has been
established. Other effects, such as capillary forces on the oil-air interface and
temperature variations should be included in future works.
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